Gsl_dist.Make
val gsl_rng : Gsl.Rng.rng_type Stdlib.ref
val rng : Stdlib.Random.State.t -> Gsl.Rng.t
val dist0 : (Gsl.Rng.t -> 'a) -> ('b -> Dagger.Log_space.t) -> 'b Dagger.Dist.t
val dist1 :
('a -> Gsl.Rng.t -> 'b) ->
('c -> 'd -> Dagger.Log_space.t) ->
'e ->
'f Dagger.Dist.t
val dist2 :
('a -> 'b -> Gsl.Rng.t -> 'c) ->
('d -> 'e -> 'f -> Dagger.Log_space.t) ->
'g ->
'h ->
'i Dagger.Dist.t
val kernel1 :
('a -> 'b -> Gsl.Rng.t -> 'c) ->
('d -> 'e -> 'f -> Dagger.Log_space.t) ->
'g ->
'h ->
'i Dagger.Dist.t
val float : float -> float Dagger.Dist.t
val int : int -> int Dagger.Dist.t
val bool : int Dagger.Dist.t
val gaussian : mean:float -> std:float -> float Dagger.Dist.t
val gaussian_tail : a:float -> std:float -> float Dagger.Dist.t
val laplace : a:float -> float Dagger.Dist.t
val exppow : a:float -> b:float -> float Dagger.Dist.t
val cauchy : a:float -> float Dagger.Dist.t
val rayleigh : sigma:float -> float Dagger.Dist.t
val rayleigh_tail : a:float -> sigma:float -> float Dagger.Dist.t
val landau : float Dagger.Dist.t
val gamma : a:float -> b:float -> float Dagger.Dist.t
val weibull : a:float -> b:float -> float Dagger.Dist.t
val flat : float -> float -> float Dagger.Dist.t
val bernoulli : bias:float -> bool Dagger.Dist.t
val binomial : float -> int -> int Dagger.Dist.t
val geometric : p:float -> int Dagger.Dist.t
val exponential : rate:float -> float Dagger.Dist.t
val poisson : rate:float -> int Dagger.Dist.t
val categorical :
(module Stdlib.Hashtbl.S with type key = 'a) ->
('a0 * float) array ->
'a1 Dagger.Dist.t
val beta : a:float -> b:float -> float Dagger.Dist.t
val dirichlet : alpha:float array -> float array Dagger.Dist.t
val lognormal : zeta:float -> sigma:float -> float Dagger.Dist.t
val chi_squared : nu:float -> float Dagger.Dist.t
val mixture : float array -> 'a Dagger.Dist.t array -> 'a0 Dagger.Dist.t